Assignment 4

Textbook Assignment:

"Measurement and Pressure Control Devices," Chapter 8:
"Reservoirs, Strainers, Filters, and Accumulators," chapter 9;
and "Actuators," chapter 10.

Learning Objective: Recognize the construction, operational characteristics, and uses of different types of fluid pressure indicators, thermometers, and control switches.

- 4-1. The pressure sensing elements of Bourdon-tube gauges are commonly made in which of the following shapes?
 - 1. The letter C
 - 2. Helical
 - 3. Spiral
 - 4. All of the above
- 4-2. Which, if any, of the following statements correctly explains the action of a C-shaped Bourdon tube?
 - Centrifugal force of fluid flowing through the curved tube causes it to straighten
 - Pressure applied to the tube causes its cross section to become more circular, causing It to straighten out
 - Pressure applied to the tube causes its cross section to become more circular, causing it to contract
 - 4. None of the above

- 4-3. A duplex Bourdon gauge is composed of
 - one indicator dependent upon both of two separate mechanisms
 - two separate and independent mechanisms and indicators
 - one mechanism with one indicator showing current pressure and a second indicator showing the maximum pressure reached
 - 4. one mechanism with one indicator showing pressure in pounds per square inch (psi) and a second indicator showing the load on a ram in tons
- 4-4. A Bourdon-tube differential pressure gauge is composed of
 - one indicator dependent upon both of two separate mechanisms
 - two separate and independent mechanisms and indicators
 - one mechanism with one indicator showing current pressure and the second indicator showing the maximum pressure reached
 - 4. one mechanism with one indicator which can register pressure either above or below atmospheric pressure
- 4-5. Which of the following gauges can be used to measure the differential pressure across a strainer?
 - 1. Duplex gauge
 - 2. Differential pressure gauge
 - 3. Both 1 and 2 above
 - 4. Compound gauge

- 4-6. Which of the following statements describes hydraulic pressure gauges?
 - The tube is designed for hydraulic fluids only
 - 2. The gauge is designed to operate at higher pressures
 - Some gauges are designed with a special type of spring-loaded linkage to prevent damage
 - All of the above
- Gauges having bellows elements are used only for pressure indicating.
 - True 1.
 - 2. False
- Which of the following is NOT a 4-8. function of pressure switches?

 - Indicating pressure
 Energizing an auxiliary control system
 - De-energizing an auxiliary control system
 - 4. Signaling a visual warning or audible alarm when a preset pressure is reached
- 4-9. The pressure switch sensing element operates on the same principle as the Bourdon-tube pressure gauge.

 - 1. True 2. False
- A change in which of the 4 - 10. following properties is the basis of operation of the bimetallic thermometer?
 - Chemical
 - 2. Electrical

 - 3. Physical4. All of the above
- 4-11. What is the maximum length, in feet, of the capillary tube of distant-reading thermometers?

 - 2. 75
 - 3. 100

- 4-12. Distant-reading thermometers operate similarly to Bourdontube pressure gauges.

 - 2. False
 - 4-13. In the operation of pressure gauges within a hydraulic system, what does a gauge snubber do?
 - Dampens out system pressure surges and oscillations to the gauge, thereby preventing internal damage
 2. Prevents hydraulic pressure
 - indicators from oscillating, thereby ensuring an accurate system pressure reading

 - 3. Both 1 and 2 above
 4. Meters the flow of pressurized hydraulic fluid from the gauge or transmitter, thereby preventing internal damage

Learning Objective: Recognize functions, operating requirements and characteristics, and construction features of hydraulic reservoirs and the functions of related components.

- 4-14. The reservoir serves the primary function of storing the hydraulic fluid required by the system, Which of the following secondary functions does it also serve?
 - Separates air from the system
 - Dissipates heat
 - Traps foreign matter
 - All of the above
- The baffles In a reservoir serve 4-15. which of the following functions?
 - Dissipate heat
 - 2.
 - Trap foreign matter Separate air form the system
 - All of the above

- 4-16. Which of the following factors must be considered In determining the reservoir capacity of a hydraulic system?
 - The thermal expansion of the fluid
 - Whether the system is fixed or mobile
 - 3. The volume of fluid required by the system
 - 4. All of the above
- 4-17. Why must the reservoir of an aircraft designed for high-altitude operations be pressurized?
 - 1. To maintain a net positive suction head to the pump
 - 2. To use atmospheric pressure to assist fluid flow
 - 3. To prevent the fluid from congealing at high altitudes
 - 4. To vent the system during periods of high fluid demand
- 4-18. A pressurized reservoir may be Instead at a level below the pump suction and still maintain a positive flow of fluid to the pump.
 - 1. True
 - 2. False

Learning Objective: Identify operating principles and applications of accumulators.

- 4-19. Hydraulic systems are equipped with one or more accumulators that serve to perform which of the following functions?
 - To provide pressure for emergency operation of the system in the event of system failure
 - To act as a buffer and absorb surges and shock pressures that might damage pipes and other components of the system
 - 3. To equalize and readjust for any pressure losses in the system due to small leaks and thermal reaction of the fluid
 - 4. All of the above

- 4-20. Which of the following statements best describe(s) the advantage a vented tailrod accumulator has over a floating piston accumulator?
 - The tailrod allows the accumulator to be used as a hydraulic actuator, thus eliminating the number of system components requiring maintenance
 - 2. The vented tailrod accumulator has the space between the piston seals vented to the atmosphere, causing air or oil leakage past the seals to be apparent
 - 3. Both 1 and 2 above
 - 4. The vented tailrod accumulator has a gauge that provides a quick indication of the amount of fluid in the accumulator
- 4-21 Why does a bladder-type, airoperated accumulator have a very high volumetric efficiency?
 - The bladder is larger at the bottom and the rubber is thinner at the top
 - 2. The bladder is larger at the top and the rubber is thinner at the bottom'
 - 3. The bladder is larger at the top and the rubber is thinner at the top
 - 4. The bladder is larger at the bottom and the rubber is thinner at the bottom
- 4-22. Which of the following statements describe(s) how an excessive amount of gas is prevented from being entrained In direct-contact accumulators?
 - Safety fluids are used in this type of accumulator
 - The fluid port is located at the bottom of the accumulator
 - These accumulators are generally not used for pressures over 1200 psi
 - 4. All of the above
- 4-23. Both the bladder-type accumulator and the diaphragm accumulator operate in a similar manner.
 - 1. True
 - 2. False

Learning Objective: Recognize the effects of foreign matter on filtration in a hydraulic power system Recall the functions, construction features, and operating characteristic of filters, strainers, and dehydrators.

- 4-24. A filter should be used to remove large particles of foreign matter from the fluid in a hydraulic power system.
 - 1. True
 - 2. False
- 4-25. To prevent the higher differential pressure that is generated at cold temperatures by high fluid viscosity from causing a false indication of a loaded filter element, what device is installed in the button-type pressure differential indicator?
 - Thermal lockout
 - Viscosity sensor 2.
 - Collapsible filter element
 - Pressure-operated bypass valve
- 4-26. Nonbypassing filters are used in a hydraulic system to serve which of the following functions?
 - Decrease the frequency of flushing the system
 - Reduce the probability of the failure of other system components
 - 3. Reduce the circulation of contaminated fluid in the system
 - 4. All of the above
- How is the bypass valve, located 4 - 2.7. within the head assembly of some filters, operated?
 - Manually
 - 2. Pressure
 - Electrically
 - Magnetically

- 4-28. When you find a filter differential pressure indicator button extended, what is the first action you should take?
 - Replace the indicator
 - Replace the filter el 2.
 - 3.
 - Replace the filter assembly Verify that the releace of the button is due to a loaded filter element
- 4-29. The recirculation of fluid through a proportional-flow filter over a period of time will eventually accomplish the same purpose as passage of the fluid once through a full flow filter.
 - True
 - 2. False
- The diameter, in microns, of the largest spherical particle that 4-30. will pass through a filter under a certain test condition defines what filtration rating?
 - Mean
 - 2. Nominal
 - 3. Absolute
 - Adequate
- Which of the following types of 4-31. filter elements would most likely be found in the air intake of a compressor?
 - Ceramic 1.
 - 2. Porous metal
 - Woven screen wire 3.
 - Moving mechanical device
- 4-32. Some pneumatic systems use chemical driers to remove any moisture that might collect in the lines beyond the water separators. The driers remove this moisture by what process?
 - Absorption 1.
 - Condensation 2.
 - 3. Evaporation
 - Precipitation 4.
- 4-33. The chemical driers referred to in the preceding question may be identified by which of the following terms?
 - Air driers 1.
 - 2. Desiccators
 - Dehumidifiers
 - Each of the above

Learning Objective: Recognize the types of fluid power actuating devices and identify construction features, uses, and operating characteristics of various types of actuating cylinders.

- What component of a fluid power 4-34. system converts fluid power into mechanical force and motion?
 - 1 Pump
 - Valve 2.
 - 3. Actuator
 - 4. Solenoid
- 4-35. What actuating devices are commonly used in fluid power systems?
 - Turbines
 - 2. Motors
 - Cylinders
 - All of the above
- A cylinder is identified as a ram 4-36. type if its
 - piston rod diameter is less than one-half of the diameter of the piston
 - piston rod area is less than On-half the area of it area is more than one-half of
 - the area of the piston rod
 - piston rod cross-sectional area exceeds one-half of the cross-sectional area of the piston
- 4-37. Ram-type single-acting cylinders are designed for which type of functions?
 - Push functions where springs assist the functions
 - Pull functions where springs assist the functions
 - Push functions where return action depends on springs or gravity
 - Pull functions where return action depends on springs or gravity

- 4-38. Four-way control valves are normally used to control the actions of the
 - single-acting ram
 - double-acting ram single-acting ram through two ports
 - double-acting ram using equal pressure on all valve surfaces
- 4-39. Refer to figure 10-2 of your textbook. Why does the extension stroke exert a greater force than the retraction stroke?
 - The pressure is much greater for the extension stroke
 - The bottom of the ram has a larger surface area than the lip
 - Both pressure and surface area are greater for the extension stroke
 - The extension stroke is usually assisted by gravity

IN QUESTIONS 4-40 THROUGH 4-42 SELECT FROM COLUMN B AN APPLICATON OF EACH TYPE OF ACTUATING CYLINDER LISTED IN COLUMN A.

A. CYLINDER TYPES B. APPLICATIONS

- 4 40. Single-acting. spring-loaded piston
- Dump trucks
- Ships' steer. ing systems
- 4-41. Telescoping ram
- 4-42. Dual ram
- Anchor windlass
- Carrier aircraft arresting hooks
- 4-43. The piston-type cylinder has a cross-sectional area that measures more than twice the cross-sectional area of its piston rod.
 - True
 - False

- 4-44. Refer to figure 10-5 in your textbook. Which statement relative to the operation of this cylinder is correct?
 - Fluid pressure extends and returns the rod
 - Fluid pressure extends the rod and gravity returns it
 - Mechanical force extends the rod and fluid pressure returns it
 - Fluid pressure extends the rod and mechanical force returns it
- 4-45. What type of directional control valve is normally used to control a single-acting, spring-loaded, piston-type actuating cylinder?
 - Shuttle
 - 2. Transfer
 - 3. Three-way
 - 4. Four-way
- Refer to figure 10-6 of your 4-46. textbook. This type of cylinder is normally installed so that the greater load is carried as the piston travels in which direction?
 - To the right
 - To the left
 - To either the right or left: it does not matter since the same pressure is applied to both sides of the piston
- Refer to figures 10-6 and 10-8 in your textbook. A double-acting 4-47. unbalanced cylinder differs from a double-acting balanced cylinder in that the balanced cylinder has
 - 1. equal, opposing piston surfaces
 - unequal piston rod areas

 - unequal piston surface areassprings to equalize pressures on the piston
- 4-48. Rotary actuation of fluid power equipment can be done only with the use of fluid power motors.
 - 1. True
 - 2. False

- 4-49. Although pumps and fluid power motors are similar in design and construction, the function of each is the direct opposite to that of the other.
 - True
 - 2. False
- 4-50. Which of the following operational conditions are provided by a fixed-displacement fluid motor?
 - Variable torque and constant
 - Constant torque and constant speed
 - Constant torque and variable speed
 - 4. Variable torque and variable speed
- 4-51. In a system requiring rotation of a motor in one direction, fluid flow to the motor can be controlled by which of the following components?
 - 1. A flow control valve
 - A variable-displacement pump 2.
 - A two-way directional cantrol valve
 - Each of the above
- 4-52. Although hydraulic systems use all of the following types of fluid power motors, pneumatic systems are limited to using which type?
 - Vane
 - 2. Gear
 - 3. Radial piston
 - 4. Axial piston
- Refer to figure 10-12 in your 4-53. textbook. Which statement about the gears is true?
 - Both 1 and 2 are driving gears
 - Both 1 and 2 are driven gears
 - 3. 1 is the driven gear and 2 is the driving gear
 4. 1 is the driving gear and 2
 - is the driven gear

- Which of the following statements concerning the operation of the vane-type motor illustrated in figure 10-13 of your textbook is false?
 - The rotor turns because area A is greater than area B
 - The pressure of the driving force is equal in all directions
 - When the rotor turns clockwise, the vanes tend to bend backward due to centrifugal force
 - The potential energy of the driving force is converted into kinetic energy in the form of rotary motion and force
- 4-55. Piston-type motors and variabledisplacement pumps are often combined to form a hydraulic transmission. The advantages of such a transmission over a mechanical transmission include which of the following?
 - Smooth acceleration and deceleration
 - Shock load effect reduction 2.
 - Smooth operating action All of the above 3. 4.

REFER TO FIGURE 10-16 IN YOUR TEXTBOOK IN ANSWERING QUESTIONS 4-56 THROUGH 4-58.

- The direction of the hydraulic 4-56. motor is controlled by which of the following components?
 - Electric motor
 - 2. Hydraulic pump
 - 3. Prime mover
 - 4. B-end

- 4-57. Which of the following statements concerning the design of the hydraulic transmission illustrated in figure 10-16 of your textbook is true?
 - 1. The A-end is a variabledisplacement axial-piston motor, and the B-end is a fixed-displacement axialpiston pump
 - The A-end is a fixeddisplacement axial-piston pump, and the B-end is a variable-displacement axialpiston motor
 - 3. The A-end is a variabledisplacement axial-piston pump, and the B-end is a fixed-displacement axialpiston motor
 - 4. The A-end is a fixeddisplacement axial-piston motor, and the B-end is a variable displacement axialpiston pump
- 4-58. The B-end of the speed gear is a fixed-displacement motor whose pistons make a full stroke for every revolution of the output shaft
 - True
 - 2. False

Learning Objective: Identify functions, operating characteristics, and construction features of various types of turbines.

- Which of the following is NOT a 4-59. use of turbines?
 - Convert kinetic energy of gas to mechanical energy
 - Supply fluid flow in hydraulic systems
 - Drive electric generators
 - 4. Drive pumps
- Which of the following turbine 4-60. parts convert(s) kinetic energy to mechanical energy?
 - Blade
 - 2 Nozzle
 - 3. Both 1 and 2 above
 - 4. Rotor

- 4-61. Which of the following forces causes the reaction turbine to rotate?
 - Reactive force produced on the moving blades as the gas increases in velocity
 Reactive force produced on the moving blades as the gas
 - changes direction
 - The impulse of the gas impinging upon the moving blades
 - 4. Each of the above

- 4-62. The nozzles of a reaction turbine are mounted between the blades.
 - True
 - 2. False